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Abstract
A method for characterizing sphere particle systems based on the calculation of the distri-
bution of the average mass density in concentric spherical layers surrounding an arbitrary
center has been developed. The effectiveness of the method has been tested on several
variants of polydisperse system models obtained in two different ways and one system
obtained by full-scale modeling. The distribution of the mass density for both methods of
generating model systems allows you to choose the better option. For a system obtained by
the field simulation method, a difference in properties is shown depending on the position
of the observation center. This paper introduces the MaDiS program which implements
the developed method.
Keywords: characteristics of a system of spherical particles, distribution of mass density,
program for the analysis of polydisperse systems, methods for generating a system of
spherical particles.

Citation: A. V. Kuchko and A. V. Smirnov, “The Distribution Function of Mass Density —
a Tool for the Analysis of Sphere Particle Systems,” Computer tools in education, no. 2,
pp. 21–29, 2023; doi: 10.32603/2071-2340-2023-2-21-29

1. INTRODUCTION

Direct modeling of natural and artificial materials by systems of spherical particles of the
same size (monodisperse systems) or of different sizes (polydisperse systems) has a long his-
tory and has been successfully used to study the mechanical properties and structure of powder,
porous and composite materials (alloys) [1, 2]. Such modeling can also be successfully used to
study structures with dimensions in the micro- and nanometer ranges based on the analysis
of optical and X-ray scattering indicatrixes (see examples [3, 4]). It is noted that in the study of
scattering, the diversity of model systems can be much wider than in the study of mechanical
properties. Mechanical model systems are mostly densely packed and almost uniform. Whereas
in X-ray scattering, modeling of fractal systems [5] can be of undoubted interest, and interfer-
ence contributions appear even for rarefied systems with a volume fraction of matter in units of
percent [4].

If characteristics of the system such as the paired correlation function of particle centers,
the distribution of coordination numbers, etc. are important in the study of mechanical proper-
ties [3, 6], then the distribution of mass (electronic) density in the system comes to the fore in
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the simulation of scattering. In this paper, a method for characterizing a system of spherical par-
ticles using a graph of the radial distribution of the scattering mass (electron density) has been
developed. Using this graph, it is possible to check both the homogeneity of the mass distribu-
tion and find possible patterns in such a distribution. The method makes sense regardless of the
packing density of particles and is especially interesting for polydisperse systems, in which, in
contrast to monodisperse systems, the spatial density centers may not correlate with the density
of spatial mass distribution.

2. METHOD DESCRIPTION

In the first step of the method, the center O and radius Rgl of the bounding spherical region,
in which the desired distribution function will be constructed, must be specified in the tested
particle system. It is observed that in one of the effective methods of direct simulation of X-ray
scattering [4], such a region is determined naturally. In the next step, N particles, that can get at
least part of their volume into the bounding area, are selected. Then the bounding area is divided
into M spherical layers with centers at the point O, and for each layer the ratio of the total mass
of particles entering the layer to the volume of the layer is calculated:

ηk =

N∑
i=1

ρi ·υ
(
pi ,ri ,Rk ,Rk+1

)
V (Rk+1)−V (Rk )

, k = 1,2, ..., M . (1)

In which,
Rk ,Rk+1 — inner and outer radii of layer with number k (R1 = 0, RM+1 = Rgl);
pi ,ri and ρi —radius vectormodule i -particles relative to the centerO, its radius, and its density
respectively;
υ
(
pi ,ri ,Rk ,Rk+1

)
— volume for i -particles falling into a layer with boundary radii Rk , Rk+1;

V (R) — volume of sphere radius R . Value k matched to the average layer radius: Lk = 1
2 (Rk +

Rk+1).
When calculating the function υ

(
pi ,ri ,Rk ,Rk+1

)
, the formula (see [7]) is used for the volume

of the area of intersection of two spheres with radii x and y and incenter distance p for the case
|x − y | ≤ p ≤ x + y :

Vinter(x, y, p) =π
[

2

3
(x3 + y3)− (x2 − y2)2

4p
− p

2
(x2 + y2)+ p3

12

]
. (2)

Calculating the volume of υ
(
pi ,ri ,Rk ,Rk+1

)
comes down to a number of cases presented in

table 1.
The developed method is implemented as the MaDis program. It is necessary to upload a

table of coordinates, radii, and particle densities of the tested system at the program input. In the
proposed software implementation of the method, the coordinates of the center of the studied
area, the maximum radius of the Rgl area, and the number of m spherical layers (intervals of
radii) must be specified. The intermediate radii of the layers are determined from the condition
that the volumes of the layers are equal to each other. Changing Ì allows to change the resolution
with which the mass density distribution function is calculated.

3. METHOD TESTING

The effectiveness of the developed method for characterizing the system was tested on sev-
eral variants of model polydisperse systems of spherical particles with a density equal to 1, ob-
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Table 1. Calculation formulas for a spherical particle of radius r with modulus of radius vectors p of the
volume υ

(
p,r,Rin,Rex

)
part, falling into the spherical layer with internal Rin and external Rex radii. Here

the notation used are as follows a = |p−r |, b = p+r for the minimum and the maximum distances of the
particle points from the center O layer

Correlation of particle
and layer parameters

Location of the intersection
points of the particle and
layer boundaries with the
axis passing through the
center of the O layers and the
center of the C particles. The
bold segment highlights the
particle diameter

Formulas for calculating the volume
of a particle entering a spherical
layer

{
a ≤ Rin,

b ≤ Rin
0

{
a ≤ Rin,

Rin < b ≤ Rex
V (r )−Vinter(r,Rin, p)

{
a ≤ Rin,

Rex < b
Vinter(r,Rex, p)−Vinter(r,Rin, p)

{
Rin < a ≤ Rex,

Rin < b ≤ Rex

V (r ) when r ≤ p,

V (r )−V (Rin) when p < r

{
Rin < a ≤ Rex,

Rex < b

Vinter(r,Rex, p) when r ≤ p,

Vinter(r,Rex, p)−V (Rin) when p < r

{
Rin < a,

Rex < b

0 when r ≤ p,

V (Rex)−V (Rin) when p < r

tained by two differentmethods, and one system of homogeneous particles obtained by full-scale
modeling.
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The first method (method A) of generating a model system consisted of the following steps:
1. Generation of a set of radii ri (i = 1,2, . . . , N ) particles in accordance with a given law f (r )

of the radius distribution. Subsequently, the value N = 5 ·104 was selected. Radii are measured
in arbitrary units. A variant of the Schultz-Zimm distribution [8], which is often used in describ-
ing particle size distributions in nanosystems, was chosen as the f (r ) distribution. To test the
reproducibility of the mass density function, 10 samples of the system were generated with an
expected value of the radius of one particle of about 8 and a square root of the dispersion of
about 4. An example of a histogram of the particle size distribution is shown in Fig. 1.

Figure 1.Histogram of the particle size distribution in one of the model system samples. The total number
of particles is 5 ·104

2. Based on the set value of the volume fraction Φ of the space filling and particle radii ob-
tained in paragraph 1, the radius Rgl is calculated such that the total volume of particles is the
fraction of Φ of the volume of a sphere of radius Rgl:

Rgl =
3

√∑N
i r 3

i

Φ
. (3)

3. Sequential generation of the coordinates of the particle centers. Each of the Cartesian co-
ordinates x, y, z of the center of the next particle was generated in accordance with the law of
uniform distribution in the interval [−Rgl,Rgl]. Coordinates x, y, z we assigned to the center of
the particle number i under the following conditions:

a) the center i -th particle is inside a sphere of radius Rgl:√
x2

i + y2
i + z2

i ≤ Rgl; (4)

b) the i -th particle has no intersections in space with all previous particles:√
(xi −x j )2 + (yi − y j )2 + (zi − z j )2 ≤ ri + r j , for j = 1,2, ...i −1. (5)

To optimize the coordinate generation process, the set of particle radii was preliminarily
sorted in descending order. When adding the coordinates of the next particle, the number of
attempts were limited by the number 1012.

In the second method (method B) of generating the system, particles were initially filled in a
certain cube with an edge A. Then, the particles that fall inside the sphere, with a radius slightly

less than half the edge of the cube, were selected: Rgl = A

2(1+ c)
. The parameter c was conven-

tionally set to 0.01.
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In this method of generating the system, the following steps were performed:

1. Generation of a set of radii ri (i = 1,2, . . . , Nsrc) of particles in accordance with the given
law f (r ) of the radius distribution. The amount of Nsrc particles filling the cube was selected

Nsrc = 6

π
Nε(1+ c)3. (6)

so that the number of particles falling inside a spherewith a radius Rgl, also turned out to be close
to N = 5 ·104. The fraction in the right part of the formula (6) is the ratio of the volumes of the
cube and the sphere inscribed in the cube. The parameter ε was added in order to compensate
for the edge effects, which are discussed below.

2. The calculation of the cube edge value based on the volume fraction Φ of the space filling
and the particle radii obtained in the step 1:

A =
3

√
4π

∑N
i r 3

i

3Φε
(7)

3. Sequential generation of the coordinates of the centers of particles. Each from the coor-
dinates x, y, z of the center of the next particle was generated in accordance with the law of
uniform distribution in the interval [−A, A]. Coordinates x, y, z were attributed to the center of
the particle number i when the condition (5) was met.

4. After generating the coordinates of all Nsrc particles, those whose centers fell inside the
sphere with a radius were selected from them

Rgl = A

2(1+ c)
, (8)

that is, those particles for which the condition (4) with the radius (8) was met.
5. The parameter ε was selected as a result of several repetitions of the steps 1–4 so that the

volume of particles selected in the step 4 was the fractionΦ of the volume of the sphere of radius
Rgl, accurate to three significant digits.

Both methods of testing systems described above have been tested on model systems with
volume fractions Φ= 0.1; 0.2; 0.3; 0.4.

A dense system of spherical particles obtained experimentally in the work [3] was chosen
as another type of system to be tested. In this work, only a table of coordinates of the centers of
particles is shown. In the authors’ work, this coordinate table was supplemented by a column
of the radii of particles. The radii of the particles were selected sequentially using the following
algorithm. For the given particle, the “nearest” particle was determined such that the distance
lnb of its center from the center of a given particle was the minimum possible. If the radius rnb
“nearest” was already determined in the previous steps, then the next particle was assigned a
radius equal to lnb–rnb. Otherwise, the next particle was assigned a radius equal to half lnb. Since
the density of the particle material in [3] is the same, the relative distribution of mass density
does not depend on the absolute density value. In the future, it will be assumed that this value is
also equal to 1.

4. METHOD APPLICATION RESULTS

To illustrate the informativeness of the proposed testing method, Fig. 1 shows the graphs
of the distribution of mass density for the model system 5 ·104 rigid spherical particles with a
density of 1. Figure 2a shows the combined distributions for ten instances of the system, which
show the degree of uncertainty of the mass density value in the ensemble of systems.
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(a) for ten instances of the system using the B gener-
ation method and the volume fraction of the volume
Φ= 0.4

(b) averaged across ten instances of the system for
two generation methods (A and B) and values of
Φ= 0.1,0.2,0.3,0.4

Figure 2. The results of theMaDiS program formodel systems 5·104 solid spherical particles with a density
of 1. Mass density distribution (MDD) in relation to distance r to the center of the system

The graphs in Fig. 2b show the difference in the mass density distributions for the two gen-
eration methods described above and for a different volume fill rate. These graphs are obtained
by averaging the graphs calculated by the MaDiS program for ten separate model systems for
each Φ value and each of the generation methods. This averaging smooths out random density
fluctuations and emphasizes the essential properties of the generated system. From the graphs
of Fig. 2b it is clearly seen that for Φ = 0.3,0.4 and generation method A, the average density
inside the system differs less from the expected value, and a density spike occurs at the system
boundary. With the generation method B, both defects are absent.

(a) with a small resolution (13 layers) (b) with a high resolution (130 layers)

Figure 3. The results of the MaDiS program for the actual system: The distribution of mass density inside
spherical regions cut from the system of particles [3], r —distance from the center of the cut-out area: 1—
the area near the system boundary; 2 — the intermediate area; 3 — the area near the center of the system

Testing the effectiveness of the proposedmethod for the actual system (see Fig. 3) was carried
out as follows: From the general array of particles from [3], located in a parallelepipedmeasuring
492 µm × 513 µm × 28 µm, three subsystems of particles were cut, the centers of which fall into
spherical regions with a diameter of 23 µm. The first region was located close to the boundaries
of the system, with the center coordinates (23.5 µm, 23.5 µm, 11.7 µm), the second — in some
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intermediate position with the center coordinates (70 µm, 70 µm, 11.7 µm), the third — near the
center of the system with the center coordinates (250 µm, 250 µm, 11.7 µm).

Figure 3a (low density mass distribution) shows that as the observation focus shifts toward
the center of the system, the average mass density inside the cut out area (the first three points)
decreases. The density distribution in the same areas constructed with a high resolution (Fig. 3b)
has clearly visible maxima, 4 µm ... 11 µm.Moreover, the abscissae of the density maxima in this
range (the conditional radii of the coordination spheres) increase when the observation area is
shifted to the center of the entire system. The decrease in mass density to zero at L ≥ 11 µm is
due to the out-flow of the cut-out area. The graphs in Fig. 3 show that the particle system in [3]
becomes less dense when it moves from the boundaries to the center of the filled volume.

5. TECHNICAL IMPLEMENTATION

The MaDiS program is implemented in C# language [9] based on the .NET Framework
4.7.2 [10] using the WPF system [11] for building the user interface, as well as the Helixtoolkit
libraries [12] for building the 3D model of the nanoparticle system, and oxyplot [13] to display
2d graphs of additional metrics (particle size distribution function). The calculations were
implemented using the Mathnet library [14].

In addition, a script was developed in Python 3.4 [15], using the scipy [16], numpy [17], and
matplotlib [18] libraries.

Both the program and the script accept data on the Cartesian coordinates, radii, and parti-
cle densities in matrix format as a set of columns: x, y, z,r,ρ. If there is no density column, the
densities are assumed to be equal to one.

The results of the work of both programs are a text file with the calculated values of the
mass density distribution function and a file with a graph of the function. The source code of the
programs is available at the GitHub [19].

6. CONCLUSION

A method for characterizing systems of spherical particles with an arbitrary distribution of
centers, radii, and densities has been developed. The method is based on calculating the distri-
bution of average mass density in concentric spherical layers in the vicinity of a given arbitrary
center. The effectiveness of the method was tested on variants of model polydisperse systems
with a value of the volume filling fraction Φ = 0.1,0.2,0.3,0.4 obtained in two different ways.
The mass density distribution allows you to detect defects in one of the generation methods. For
the system obtained by the field modeling method, the presence of periodicity in the mass dis-
tribution, as well as a de-crease in the density of the system when the center of observation is
shifted from the edge of the system to its center, is demonstrated.

There are many methods for producing model systems of spherical particles [6, 20–24]. The
developedmethod for calculating the radial distribution of the scatteringmass (electron density)
will be useful for studying the properties and structure of such systems. Thus, for instance, the
mass distribution homogeneity has a strong influence on SAXS-intensity when calculated for
model systems generated with the method described in [4] and a given value of Ф. It is obvious
that the density spike at the system boundary and the discrepancy between the expected and
actual values of the average density inside the system, detected for one of the generationmethods
(see Fig. 2b), lead to a distortion of the calculated intensity. In work [3] it is presumed that the
experimentally prepared system is homogeneous can be considered to be mostly homogeneous.
However, as is shown above, when shifting from the edge to the center of the system a decrease
in the average mass density distribution can be observed.
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Аннотация

Разработан метод характеристики систем сферических частиц, основанный на расче-
те распределения средней плотности массы в концентрических сферических слоях,
окружающих произвольный центр. Эффективность метода проверена на нескольких
вариантах моделей полидисперсных систем, полученных двумя разными способами,
и на одной системе, полученной натурным моделированием. Распределение массо-
вой плотности для обоих способов построения модельных систем позволяет выбрать
лучший вариант. Для системы, полученной методом моделирования поля, показано
различие свойств в зависимости от положения центра наблюдения. В данной статье
представлена программа MaDiS, реализующая разработанный метод.
Ключевые слова: характеристики системы сферических частиц, распределение
плотности массы, программа для анализа полидисперсных систем, методы генерации
системы сферических частиц.

Цитирование: Кучко А. В., Смирнов А. В. Функция распределения плотности массы—
инструмент для анализа систем сферических частиц // Компьютерные инструменты
в образовании. 2023. № 2. С. 21–29. doi:10.32603/2071-2340-2023-2-21-29

Поступила в редакцию 14.05.2023, окончательный вариант — 22.06.2023.

Кучко Артем Владимирович, независимый исследователь, Санкт-Петербург,
� artemkav@gmail.com

Смирнов Александр Витальевич, кандидат физико-математических наук, доцент,
старший преподаватель физического факультета, университет ИТМО, smirnav_2@mail.ru

ALGORITHMIC MATHEMATICS 29

http://cte.eltech.ru
http://dx.doi.org/10.32603/2071-2340-2023-2-21-29
mailto:artemkav@gmail.com
http://orcid.org/0000-0003-0971-0810
mailto:smirnav_2@mail.ru
http://orcid.org/0000-0002-2677-136X
mailto:artemkav@gmail.com
mailto:smirnav_2@mail.ru

	INTRODUCTION
	METHOD DESCRIPTION
	METHOD TESTING
	METHOD APPLICATION RESULTS
	TECHNICAL IMPLEMENTATION
	CONCLUSION

